Auto-Bin a plot of a continuous moderating variable into a discrete moderating variable
Source:R/plot_moderators.R
plot_moderator_c_bin.Rd
Use a regression tree to optimally bin a continous variable
Usage
plot_moderator_c_bin(
.model,
moderator,
type = c("density", "histogram", "errorbar"),
.alpha = 0.7,
facet = FALSE,
.ncol = 1,
.name = "bin"
)
Arguments
- .model
a model produced by `bartCause::bartc()`
- moderator
the moderator as a vector
- type
string to specify if you would like to plot a histogram, density or error bar plot
- .alpha
transparency value [0, 1]
- facet
TRUE/FALSE. Create panel plots of each moderator level?
- .ncol
number of columns to use when faceting
- .name
sting representing the name of the moderating variable
Examples
# \donttest{
data(lalonde)
confounders <- c('age', 'educ', 'black', 'hisp', 'married', 'nodegr')
model_results <- bartCause::bartc(
response = lalonde[['re78']],
treatment = lalonde[['treat']],
confounders = as.matrix(lalonde[, confounders]),
estimand = 'ate',
commonSuprule = 'none'
)
#> fitting treatment model via method 'bart'
#> fitting response model via method 'bart'
plot_moderator_c_bin(model_results, lalonde$age, .name = 'age')
#> Joining with `by = join_by(splits)`
# }