Skip to contents

Trace plots may occlude convegence issues within Markov Chains. Trace rank plots present an alternartive convergence diagnostic of MCMC convergence. Trank plots are described in detail in Vehtari et al. (2021).

Usage

plot_trank(.model, type = c("cate", "sate", "pate", "sigma"))

Arguments

.model

a model produced by `bartCause::bartc()`

type

parameter to plot options are average treatment effects: `cate`, `sate` and `pate` as well as posterior predicitve uncertainty `sigma`

Value

ggplot object

References

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P. C. (2021). Rank-normalization, folding, and localization: An improved R ̂ for assessing convergence of MCMC (with discussion). Bayesian analysis, 16(2), 667-718.

Author

George Perrett

Examples

# \donttest{
data(lalonde)
confounders <- c('age', 'educ', 'black', 'hisp', 'married', 'nodegr')
model_results <- bartCause::bartc(
 response = lalonde[['re78']],
 treatment = lalonde[['treat']],
 confounders = as.matrix(lalonde[, confounders]),
 estimand = 'ate',
 commonSup.rule = 'none'
)
#> fitting treatment model via method 'bart'
#> fitting response model via method 'bart'
plot_trank(.model = model_results)

# }